PDF下载 分享
[1]杨思彤,王锐,吴汉光.基于不同金属氧化物的甲醛气体传感器的研究进展[J].北京服装学院学报(自然科学版),2021,(1):83-91.
 YANG Si-tong,WANG Rui,WU Han-guang.Research Progress in Formaldehyde Sensors Based onDifferent Metal Oxides[J].Journal of Beijing Institute of fashion Technology,2021,(1):83-91.
点击复制

基于不同金属氧化物的甲醛气体传感器的研究进展

参考文献/References:

[1] 祝艳涛,方正,罗建波,等. 甲醛气体传感器研究进展[J]. 中国 测试技术,2008,34(1): 100 -104. ZHU Y T, FANG Z, LUO J B, et al. Research progress of formaldehyde gas sensor[J]. China Measurement & Testing Tech- nology, 2008, 34(1): 100 -104. [2] 邹莹,许婷,壮亚峰. 传感技术用于甲醛测定的研究[J]. 环境 科学与管理,2011,36(3): 87 -91. ZOU Y, XU T, ZHUANG Y F. Research on the determination of formaldehyde by sensing technology[J]. Environmental Science and Management, 2011, 36(3): 87 -91. [3] 郑良军,程军,谢劲灿,等. 甲醛气体传感器研究进展[J]. 传感 器与微系统,2016,35(7):1. ZHENG L J, CHENG J, XIE J C, et al. Research progress of form- aldehyde gas sensor[J]. Transducer and Microsystem Technologies, 2016, 35(7):1. [4] 郭威威,周麒麟,陆伟丽. Ni 掺杂SnO2 气敏材料优化设计及对 低浓度甲醛气敏性能研究[J]. 功能材料,2018,49(12):12129 - 12143. GUO W W, ZHOU Q L, LU W L. Optimization design of Ni doped SnO2 gas sensitive materials and study on gas sensitive properties of low concentration formaldehyde[J]. Journal of Functionan Materials, 2018, 49(12): 12129 -12143. [5] 袁宝珍,马志红,韩荣蓉,等. Ce 掺杂的SnO2 基纳米粒子对甲 醛气体的高效响应[J]. 化学研究与应用,2019,31(7):1249 - 1254. YUAN B Z, MA Z H, HAN R R, et al. High efficiency response of Ce doped SnO2 nanoparticles to formaldehyde gas[ J]. Chemical Research Application, 2019, 31(7): 1249 -1254. [6] 黄峰,舒绍明,刘翎玥,等. 氧化铟纳米纤维的制备及其甲醛气 敏性能[J]. 武汉工程大学学报,2016,38(6):538 -543. HUANG F, SHU S M, LIU L Y, et al. Preparation of indium oxide nanofibers and their formaldehyde gas-sensitive properties[J]. Jour- nal of Wuhan Institute of Technology, 2016, 38(6): 538 -543. [7] MENG D, LIU D, WANG G S, et al. CuO hollow microspheres self-assembled with nanobars: Synthesis and their sensing properties to formaldehyde[J]. Vacuum, 2017, 144:272 -280. [8] 孟丹,张硕,彭耀嘉,等. 一种花状CuO 微球制备方法及其在甲 醛气体传感器应用: 中国, CN106976903A[P]. 2017 -02 -28. MENG D, ZHANG S, PENG Y J, et al. The invention relates to a preparation method of flower-like CuO microsphere and its applica- tion in formaldehyde gas sensor: China,CN106976903A[P]. 2017 - 02 -28. [9] 刘如征,全宝富,刘凤敏,等. In2 O3 基甲醛传感器的研制[J]. 电子元件与材料,2006,25(11):15 -17. LIU R Z, QUAN B F, LIU F M, et al. Development of In2 O3 - based formaldehyde sensor[J]. Electronic Components and Materials, 2006, 25(11):15 -17. [10] VELUSAMY P, BABU R R, RAMAMURTHI K, et al. Gas sensing and opto-electronic properties of spray deposited cobalt doped CdO thin films[J]. Sensors and Actuators B: Chemical, 2018(255): 871 [11] VELUSAMY P, XING R, BABU R R, et al. A study on formal- dehyde gas sensing and optoelectronic properties of Bi-doped CdO thin films deposited by an economic solution process[J]. Sensors and Actuators B: Chemical, 2019(297): 126718 [12] 刘子骐,杨留方,王悦. 甲醛气体传感器的研究[J]. 云南民族 大学学报(自然科学版),2017, 26(2): 159 -161. LIU Z Q, YANG L F, WANG Y. Research on formaldehyde gas sensor[J]. Journal of Yunnan University, 2017, 26(2): 159 - 161. [13] 吕品,邱巍,岳成君,等. 电阻型半导体甲醛传感器研究进展 [J]. 传感器与微系统,2016,35(12):1. LV P, QIU W, YUE C J, et al. Research progress of resistance- type semiconductor formaldehyde sensor[J]. Transducer and Mi- crosystem Technologies, 2016, 35(12): 1. [14] 刘翎玥,杨卫,张国柱,等. 花状Au-SnO2 复合材料的制备及其 对甲醛气敏性能的研究[J]. 传感技术学报,2017,30(8): 1158 -1162. LIU L Y, YANG W, ZHANG G Z, et al. Preparation of flower- like Au-SnO2 composite and its gas sensitive properties to formal- dehyde[J]. Journal of Transduction Technology, 2017, 30(8): 1158 -1162. [15] BHATI V S, HOJAMBERDIEV M, KUMAR M. Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review[J]. Energy Reports, 2020, 6: 46 -62. [16] DAZA L,DASSY S,DELMON B. Chemical sensors based on SnO2 and WO3 for the detection of formaldehyde: Cooperative effects [J]. Sensors and Actuators B: Chemical, 1993, 10(2): 99 - 105. [17] YANG J D, WANG S R, DONG R, et al. One-pot synthesis of SnO2 hollow microspheres and their formaldehyde sensor applica- tion[J]. Materials Letters, 2016(184): 9 -12. [18] YU H, YANG T Y, WANG Z Y, et al. Facile synthesis cedar-like SnO2 hierarchical micro-nanostructures with improved formalde- hyde gas sensing characteristics[J]. Journal of Alloys and Com- pounds, 2017(724): 121 -129. [19] HU J C, WANG H P, CHEN M P, et al. Constructing hierarchi- cal SnO2 nanoflowers for enhanced formaldehyde sensing perform-ances[J]. Materials Letters, 2020(263): 126843. [20] ZHAO R J, ZHANG X, PENG S J, et al. Shaddock peels as bio- templates synthesis of Cd-doped SnO2 nanofibers: A high perform- ance formaldehyde sensing material [ J]. Journal of Alloys and Compounds, 2020(813): 152170. [21] DU L T, LI H Y, LI S, et al. A gas sensor based on Ga-doped SnO2 porous microflowers for detecting formaldehyde at low temper- ature[J]. Chemical Physics Letters, 2018(713): 235 -241. [22] GU C P, GUAN W M, LIU X S, et al. Controlled synthesis of porous Ni-doped SnO2 microstructures and their enhanced gas sensing properties [ J ]. Journal of Alloys and Compounds, 2017(692): 855 -864. [23] ZHU K M, MA S Y, TIE Y, et al. Highly sensitive formaldehyde gas sensors based on Y-doped SnO2 hierarchical flower-shaped nanostructures [ J ]. Journal of Alloys and Compounds, 2019(792): 938 -944. [24] LIU D, PAN J L, TANG J H, et al. Ag decorated SnO2 nanoparti- cles to enhance formaldehyde sensing properties [J]. Journal of Physics and Chemistry of Solids, 2019(124): 36 -43. [25] LI G J, CHENG Z X, XIANG Q, et al. Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone[J]. Sensors and Actuators B: Chemical, 2019(283): 590 -601. [26] LI B X, XIE Y, JING M, et al. In2 O3 hollow microspheres: Syn- thesis from designed In(OH)3 precursors and applications in gas sensors and photocatalysis[J]. Langmuir, 2006 (22): 9380 - 9385. [27] LIANG Q H, ZOU X X, CHEN H, et al. High-performance form- aldehyde sensing realized by alkaline-earth metals doped In2 O3 nanotubes with optimized surface propertie [J]. Sensors and Actu- ators B: Chemical, 2020(304): 127241. [28] ZHAO Y F, ZOU X X, CHEN H, et al. Tailoring energy level and surface basicity of metal oxide semiconductors by rare-earth in- corporation for high-performance formaldehyde detection[J]. Inor- ganic Chemistry Frontiers, 2019, 6(7): 1767 -1774. [29] IM D, KIM D, JEONG D, et al. Improved formaldehyde gas sens- ing properties of well-controlled Au nanoparticle-decorated In2 O3 nanofibers integrated on low power MEMS platform[J]. Journal of Materials Science & Technology, 2020(38): 56 -63. [30] XUE Y Y, WANG J L, LI S N, et al. Mesoporous Ag/ In2 O3 com- posite derived from indium organic framework as high performance formaldehyde sensor [ J ]. Journal of Solid State Chemistry, 2017(251): 170 -175. [31] ZENG X, LIU L, LV Y, et al. Ultra-sensitive and fast response formaldehyde sensor based on La2 O3 -In2 O3 beaded nanotubes at low temperature [ J]. Chemical Physics Letters, 2020 (746): 137289. [32] 章伟,秦薇薇,李雨桐,等. 用于半导体甲醛传感器的甲醛敏感 材料及半导体甲醛传感器: 中国,CN104677950A[P]. 2015 - 02 -15. ZHANG W, QIN W W, LI Y T, et al. Formaldehyde sensitive material and semiconductor formaldehyde sensor for semiconductor formaldehyde sensor: China, CN104677950A[P]. 2015 - 06 - 03. [33] GE W W, CHANG Y H, NATARAJAN V, et al. In2 O3 -SnO2 hy- brid porous nanostructures delivering enhanced formaldehyde sens- ing performance [ J ]. Journal of Alloys and Compounds, 2018(746): 36 -44. [34] CAO Y Y, HE Y, ZOU X X, et al. Tungsten oxide clusters deco- rated ultrathin In2 O3 nanosheets for selective detecting formalde- hyde[J]. Sensors and Actuators B: Chemical, 2017(252): 232 -238. [35] 何一聪,罗浩,朱振. 超敏感的ZnO 镀覆传感器在室温下对甲 醛的影响[J]. 广州化工,2018, 46(5): 561 -563. HE Y C, LUO H, ZHU Z. Effect of ultra-sensitive ZnO coated sensor on formaldehyde at room temperature [ J]. Guangzhou Chemical Industry, 2018, 46(5): 561 -563. [36] 任文强,宋金玲,张胤. 低温水热法制备ZnO 材料及其对甲醛 气敏性能的研究[J]. 材料与冶金学报,2013,12(4): 271 - 279. REN W Q, SONG J L, ZHANG Y. Study on preparation of ZnO materials by low temperature hydrothermal method and its gas sen- sitive properties to formaldehyde [ J]. Journal of Materials and Metallurgy, 2013, 12(4): 271 -279. [37] WANG S M, CAO J, CUI W, et al. Constructing chinky zinc ox- ide hierarchical hexahedrons for highly sensitive formaldehyde gas detection[J]. Journal of Alloys and Compounds, 2019 (775): 402 -410. [38] CHEN H T, LI C L, ZHANG X G, et al. ZnO nanoplates with a- bundant porosity for significant formaldehyde-sensing[J]. Materi- als Letters, 2020(260): 126982. [39] LIU D, WAN J W, WANG H, et al. Mesoporous Au@ ZnO flow- er-like nanostructure for enhanced formaldehyde sensing perform- ance[ J]. Inorganic Chemistry Communications, 2019 (102): 203 -209. [40] XU J Q, JIA X H, LOU X D, et al. Selective detection of HCHO gas using mixed oxides of ZnO/ ZnSnO3 [J]. Sensors and Actua- tors B: Chemical, 2007, 120(2): 694 -699. [41] LI Y W, JIN H H, SUN G, et al. Synthesis of novel porous ZnO octahedrons and their improved UV-light activated formaldehyde- sensing performance by Au decoration[J]. Physica E: Low-di- mensional Systems and Nanostructures, 2019(106): 40 -44. [42] SAN X G, LI M, LIU D Y, et al. A facile one-step hydrothermal synthesis of NiO/ ZnO heterojunction microflowers for the enhanced formaldehyde sensing properties[J]. Journal of Alloys and Com- pounds, 2018(739): 260 -269. [43] WANG T Y, LIU B B, LI Q J, et al. Controllable construction of Cr2 O3 -ZnO hierarchical heterostructures and their formaldehyde gas sensing properties[J]. Materials Letters, 2018(221):260 - 263. [44] ZHAO L J, CHEN Y P, LI X Y, et al. Room temperature formal- dehyde sensing of hollow SnO2 / ZnO heterojunctions under UV -LED activation [ J]. IEEE Sensors Journal, 2019, 19 (17 ): 7207. [45] 惠晓雨,孙一诺,王浩任,等. CuO 纳米材料的合成及其气敏性 能研究进展[J]. 山东化工,2019, 19(48): 67 -68. HUI X Y, SUN Y N, WANG H R, et al. Advances in the synthe- sis and gas sensitive properties of CuO nanomaterials[J]. Shan- dong Chemical Industry, 2019, 19(48): 67 -68. [46] GOU X L, WANG G X, YANG J, et al. Chemical synthesis, characterisation and gas sensing performance of copper oxide na- noribbons[J]. Journal of Materials Chemistry, 2008, 18 (9): 965. [47] 王硕,李祺炜,于慧敏,等. 水热法制备三维花状WO3 基甲醛 气敏材料[J]. 有色矿冶,2018,34(5): 39 -42. WANG S, LI Q W, YU H M, et al. Three-dimensional flower-like WO3 -formaldehyde gas-sensitive materials were prepared by hydro- thermal method[J]. Nonferrous Mining and Metallurgy, 2018, 34(5): 39 -42. [48] FU Q J, AI M M, DUAN Y, et al. Synthesis of uniform porous NiO nanotetrahedra and their excellent gas-sensing performance to- ward formaldehyde[J]. RSC Advances, 2017, 7(82): 52312 - 52320. [49] LONTIO FOMEKONG R, TEDJIEUKENG KAMTA H M, NGOLUI LAMBI J, et al. A sub-ppm level formaldehyde gas sen- sor based on Zn-doped NiO prepared by a co-precipitation route [J]. Journal of Alloys and Compounds, 2018 (731): 1188 - 1196. [50] LIANG Y, YANG Y, ZHOU H, et al. Active {1 1 1}-faceted ul- tra-thin NiO single-crystalline porous nanosheets supported highly dispersed Pt nanoparticles for synergetic enhancement of gas sens- ing and photocatalytic performance[J]. Applied Surface Science, 2019(471): 124 -133. [51] ZHANG S P, LEI T, LI D, et al. UV light activation of TiO2 for sensing formaldehyde: How to be sensitive, recovering fast, and humidity less sensitive[J]. Sensors and Actuators B: Chemical, 2014(202): 964 -970.

备注/Memo

收稿日期: 2020 -07 -02 基金项目: 北京服装学院高水平教师队伍建设专项资金(BIFTXJ201911);北京学者项目(RCQJ20303) 通信作者: 吴汉光,女,博士,副教授,主要从事高性能功能材料的开发研究;E-mail: 20180064@ bift. edu. cn。

更新日期/Last Update: 1900-01-01